Electronic.sk | Základné pojmy: Elektrotechnika | Elektronika






...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Globálne otepľovanie
 

Toto je článok o súčasných klimatických zmenách 20. a 21. storočia. O predchádzajúcich klimatických zmenách a tejto téme všeobecne pozri Klimatické zmeny.
Globálna stredná teplota od r. 1880 do r. 2015 podľa inštrumentálnych meraní. Čierna čiara je ročný priemer a červená čiara je päťročný kĺzavý priemer. Zjavný je vzostup globálnych teplôt.
Mapa odchýlok 10-ročných priemerov teploty za obdobie 2011 – 2020 oproti priemeru 1951 – 1980.
Koncentrácie atmosférického CO2 za posledných 650 tisíc rokov.
Koncentrácie atmosférického CO2 za posledných 60 rokov – meracia stanica Mauna Loa (Havaj)

Pojem globálne otepľovanie označuje dlhodobé otepľovanie klimatického systému Zeme, ktoré sa pozoruje od predindustriálneho obdobia (od rokov 1850 až 1900) v dôsledku ľudskej činnosti, predovšetkým spaľovania fosílnych palív, ktoré zvyšuje množstvo skleníkových plynov v zemskej atmosfére, ktoré zachytávajú teplo. Tento pojem sa často používa zameniteľne s pojmom zmena klímy.[1] Klimatické zmeny sa vyskytovali už v minulosti, ale súčasné zmeny sú rýchlejšie ako všetky známe udalosti v histórii Zeme.[2] Hlavnou príčinou sú emisie skleníkových plynov, predovšetkým oxidu uhličitého (CO2) a metánu. Väčšina týchto emisií pochádza zo spaľovania fosílnych palív na výrobu energie. Ďalšími zdrojmi sú poľnohospodárstvo, výroba ocele, výroba cementu a úbytok lesov.[3] K zvyšovaniu teploty prispievajú aj spätné klimatické väzby, ako napríklad úbytok snehovej pokrývky odrážajúcej slnečné žiarenie a uvoľňovanie oxidu uhličitého z lesov postihnutých suchom. Tieto faktory spoločne zosilňujú globálne otepľovanie.[4]

Teploty na pevnine stúpajú približne dvakrát rýchlejšie, ako je celosvetový priemer. Púšte sa rozširujú, vlny horúčav a lesné požiare sú častejšie.[5] Zvýšené otepľovanie v Arktíde prispieva k topeniu permafrostu, ústupu ľadovcov a úbytku morského ľadu.[6] Vyššie teploty spôsobujú aj intenzívnejšie búrky a iné extrémy počasia.[7] Na miestach, ako sú koralové útesy, hory a Arktída, sú mnohé druhy nútené presúvať sa alebo vymierajú v dôsledku zmeny klímy.[8] Zmena klímy ohrozuje ľudí nedostatkom potravín a vody, zvýšeným výskytom povodní, extrémnymi horúčavami, väčším počtom chorôb a hospodárskymi stratami. Môže tiež spôsobiť migráciu ľudí.[9] Svetová zdravotnícka organizácia označuje zmenu klímy za najväčšiu hrozbu pre globálne zdravie v 21. storočí.[10] Aj v prípade, že úsilie o minimalizáciu budúceho otepľovania bude úspešné, niektoré dôsledky budú pretrvávať celé stáročia. Patrí k nim stúpajúca hladina morí a teplejšie a kyslejšie oceány.[11]

Mnohé z týchto vplyvov sa prejavujú už pri súčasných úrovniach otepľovania okolo 1,2 °C. Medzivládny panel pre zmenu klímy (IPCC) predpokladá ešte väčšie dôsledky, ak sa oteplenie udrží na 1,5 °C alebo viac.[12] Ďalšie otepľovanie tiež zvyšuje riziko prekročenia kritických bodov v klimatickom systéme, ako je napríklad topenie grónskeho ľadovca. Reakcia na tieto zmeny zahŕňa prijatie opatrení na obmedzenie otepľovania a prispôsobenie sa týmto zmenám.[13] Budúce otepľovanie možno obmedziť (zmierniť) znížením emisií skleníkových plynov a ich odstránením z atmosféry. To bude zahŕňať väčšie využívanie veternej a slnečnej energie, postupné vyraďovanie fosílnych palív a zvyšovanie energetickej účinnosti.[14] Ďalšie zníženie emisií by priniesol prechod na elektrické vozidlá, verejnú dopravu[15][16][17] a tepelné čerpadlá pre domácnosti a komerčné budovy.[18] Zabránenie odlesňovaniu a ochrana lesov môže pomôcť absorbovať CO2.[19] Spoločnosť sa môže prispôsobiť zmene klímy lepšou ochranou pobrežia, zvládaním katastrof a vývojom odolnejších plodín. Samotné adaptačné úsilie nemôže zabrániť riziku vážnych, rozsiahlych a trvalých následkov.[20]

V rámci Parížskej dohody z roku 2015 sa krajiny spoločne zaviazali udržať otepľovanie „výrazne pod 2 °C“ prostredníctvom úsilia o zmiernenie.[21] Aj napriek záväzkom prijatým v rámci dohody by však globálne otepľovanie do konca storočia dosiahlo približne 2,7 °C. Obmedzenie otepľovania na 1,5 °C by si vyžadovalo zníženie emisií o polovicu do roku 2030 a dosiahnutie nulových čistých emisií do roku 2050.[22]

Predpokladá sa, že do roku 2100 sa teplota zemského povrchu zvýši o 0,3 až 1,7 °C v prípade scenárov s výrazným znížením produkcie CO2 alebo o 2,6 až 4,8 °C v prípade scenára s dnešnou mierou produkcie CO2.[23][24] Neistoty v odhadoch nárastu teploty vyplývajú z použitia modelov s rôznou citlivosťou zmeny teploty na koncentráciu skleníkových plynov.[25][26] Očakávané budúce otepľovanie a súvisiace zmeny však nie sú jednotné a budú sa v jednotlivých regiónoch líšiť.[27] Klimatická variabilita sa bude lokálne zvyšovať, ale globálne znižovať.[28] Očakáva sa, že otepľovanie bude väčšie nad pevninou[29] ako nad oceánmi a najvýraznejšie v Arktíde[30] a bude spojené s pokračujúcim topením ľadovcov, večného ľadu a morského ľadu, ktoré bude sprevádzať zvyšovanie hladiny morí, zmeny v množstve a forme zrážok[31] a rozširovanie subtropických púští.[32] Medzi ďalšie očakávané udalosti patria častejšie extrémne výkyvy počasia, ako sú vlny horúčav, obdobia sucha, lesné požiare, prívalové dažde so záplavami, intenzívne sneženie, okysľovanie oceánov a masívne vymieranie druhov.[33] Z dôsledkov dôležitých pre ľudí je obzvlášť dôležitá strata potravinovej bezpečnosti v dôsledku klesajúcich poľnohospodárskych výnosov a strata biotopov v dôsledku pobrežných záplav.[34] Keďže klimatický systém má veľkú zotrvačnosť a skleníkové plyny zostávajú v atmosfére dlhý čas, mnohé z týchto účinkov budú pretrvávať nielen desaťročia alebo storočia, ale aj desaťtisíce rokov.[35]

Termín Globálne otepľovanie vo všeobecnosti zahŕňa ľudský faktor. Neutrálnejší termín klimatické zmeny sa používa pre zmeny v klíme, bez predpokladu príčin a bez charakteristiky typu zapríčinených zmien. Z tohto pravidla existuje významná výnimka: Rámcová dohoda OSN o zmene klímy používa termín klimatické zmeny pre ľudskou činnosťou vynútené zmeny a klimatické kolísanie pre zmeny bez ľudského pričinenia. Niekedy sa pre naznačenie predpokladu ľudského vplyvu používa termín klimatická zmena.

Historický vývoj teplôt

Mnohé nezávisle vytvorené súbory inštrumentálnych údajov ukazujú, že klimatický systém sa otepľuje.[36] V desaťročí 2011–2020 sa oteplilo o 1,09 °C v porovnaní s predindustriálnym východiskovým obdobím (1850–1900).[37] Povrchové teploty sa zvyšujú približne o 0,2 °C za desaťročie,[38] pričom v roku 2020 dosiahnu teploty o 1,2 °C viac ako v predindustriálnom období.[39] Od roku 1950 sa počet chladných dní a nocí znížil a počet teplých dní a nocí sa zvýšil.[40]

Od 18. storočia do polovice 19. storočia došlo k miernemu otepleniu. Informácie o klíme v tomto období pochádzajú z klimatických proxy, ako sú stromy a ľadové jadrá. Ukazujú, že prirodzené výkyvy vykompenzovali skoré účinky priemyselnej revolúcie.[41] Prístrojové záznamy (záznamy teplomerov) začali poskytovať globálne pokrytie okolo roku 1850.[42] Historické modely otepľovania a ochladzovania, ako napríklad stredoveká klimatická anomália a malá doba ľadová, sa nevyskytli v rovnakom čase v rôznych regiónoch. Teploty mohli v obmedzenom počte regiónov dosiahnuť až do konca 20. storočia.[43] V minulosti sa vyskytli prehistorické epizódy globálneho otepľovania, ako napríklad paleocénno-eocénne tepelné maximum.[44] Avšak súčasný pozorovaný nárast teploty a koncentrácie CO2 je taký rýchly, že ani náhle geofyzikálne udalosti v histórii Zeme sa nepribližujú k súčasnému tempu.[45]

Dôkazy o otepľovaní vyplývajúce z meraní teploty vzduchu potvrdzujú aj viaceré ďalšie pozorovania:[46][47] Zvýšila sa frekvencia a intenzita výskytu silných zrážok, topenie snehu a pevninského ľadu a zvýšila sa vlhkosť vzduchu.[48] Otepľovaniu zodpovedá aj správanie flóry a fauny, napríklad rastliny na jar kvitnú skôr.[49] Ďalším kľúčovým ukazovateľom je ochladzovanie horných vrstiev atmosféry, ktoré dokazuje, že skleníkové plyny zachytávajú teplo v blízkosti zemského povrchu a zabraňujú jeho vyžarovaniu do vesmíru.[50]

Regióny sa otepľujú rôznym tempom. Táto zmena v otepľovaní nezávisí od toho, kde sú skleníkové plyny vypúšťané, pretože plyny pretrvávajú dostatočne dlho na to, aby sa rozptýlili po celej planéte. Od predindustriálneho obdobia sa priemerná povrchová teplota na pevnine zvýšila takmer dvakrát rýchlejšie ako priemerná globálna povrchová teplota,[51] a to v dôsledku väčšej tepelnej kapacity oceánov a skutočnosti, že oceány strácajú viac tepla vyparovaním.[52] Tepelná energia v globálnom klimatickom systéme sa minimálne od roku 1970 zvyšuje len s prestávkami a viac ako 90 % tejto dodatočnej energie sa uložilo v oceánoch,[53][54] pričom zvyšok zohrieva atmosféru, topí ľad a zohrieva kontinenty.[55]

Severná pologuľa a severný pól sa otepľujú oveľa rýchlejšie ako južná pologuľa a južný pól. Severná pologuľa má nielen oveľa viac pevniny, ale aj viac sezónnej snehovej pokrývky a morského ľadu. Keďže tieto povrchy odrážajú veľa svetla a po roztopení ľadu sa zmenia na tmavé, začnú absorbovať viac tepla.[56] K otepľovaniu Arktídy prispievajú aj lokálne nánosy čierneho uhlíka na snehu a ľade.[57] Teplota v Arktíde stúpa viac ako dvakrát rýchlejšie ako vo zvyšku sveta. Topenie ľadovcov a ľadovej pokrývky v Arktíde narúša oceánsku cirkuláciu vrátane oslabenia Golfského prúdu, čo ďalej mení klímu.[58] Topenie ľadovcov a ľadovej pokrývky v Arktíde ďalej mení klímu.[59]

Príčiny zmien teploty (vonkajšie vplyvy)

Samotný klimatický systém zažíva rôzne cykly, ktoré môžu trvať roky (napríklad El Niňo - južná oscilácia), desaťročia alebo dokonca storočia.[60][61] Ďalšie zmeny sú spôsobené energetickou nerovnováhou, ktorá je "vonkajšia" pre klimatický systém, ale nie vždy je vonkajšia pre Zem.[62] Príkladom vonkajších vplyvov sú zmeny koncentrácie skleníkových plynov, slnečné žiarenie, sopečné erupcie a zmeny v obežnej dráhe Zeme okolo Slnka.[63]

Na určenie ľudského príspevku k zmene klímy je potrebné vylúčiť známu vnútornú premenlivosť klímy a prirodzené vonkajšie vplyvy. Kľúčovým prístupom je identifikovať jedinečné "odtlačky prstov" všetkých potenciálnych príčin a potom porovnať tieto odtlačky s pozorovanými vzorcami klimatických zmien.[64][65] Napríklad slnečné žiarenie možno vylúčiť ako hlavnú príčinu. Jeho odtlačkom by bolo otepľovanie celej atmosféry. Napriek tomu sa oteplili len spodné vrstvy atmosféry, čo zodpovedá pôsobeniu skleníkových plynov."[66] Analýza nedávnych klimatických zmien naznačuje, že hlavnou príčinou je nárast skleníkových plynov, ale veľký vplyv majú aj aerosóly.[67]

Skleníkové plyny

Zem absorbuje slnečné žiarenie a potom ho vyžaruje ako teplo. Skleníkové plyny v atmosfére pohlcujú a opätovne vyžarujú infračervené žiarenie, čím spomaľujú jeho prechod atmosférou a únik do vesmíru.[68] Pred priemyselnou revolúciou spôsobovali prirodzene sa vyskytujúce skleníkové plyny, že vzduch pri povrchu bol približne o 33 °C teplejší, ako by bol v prípade ich absencie.[69][70] Hoci vodná para (~ 50 %) a oblaky (~ 25 %) sú najväčšími prispievateľmi k skleníkovému efektu, ich množstvo sa zvyšuje v závislosti od teploty, a preto sú spätnou väzbou. Naproti tomu koncentrácie plynov, ako sú CO2 (~20 %), troposférický ozón,[71] freóny a oxid dusný, nie sú závislé od teploty, a preto sú vonkajšími faktormi.[72][73]

Ľudská činnosť od priemyselnej revolúcie, najmä ťažba a spaľovanie fosílnych palív (uhlia, ropy a zemného plynu),[74] zvýšila množstvo skleníkových plynov v atmosfére, čo viedlo k radiačnej nerovnováhe. V roku 2019 vzrástli koncentrácie CO2 od roku 1750 približne o 48 % a metánu o 160 %.[75] Tieto hodnoty CO2 sú vyššie ako kedykoľvek za posledné 2 milióny rokov. Koncentrácie metánu sú oveľa vyššie ako za posledných 800 000 rokov.[76]

Celosvetové antropogénne emisie skleníkových plynov v roku 2018, bez emisií zo zmeny využívania pôdy, predstavovali ekvivalent 52 miliárd ton CO2. Z týchto emisií tvorí 72 % CO2, 19 % metán, 6 % oxid dusný a 3 % fluórované plyny.[77] 72 % emisií CO2 pochádza predovšetkým zo spaľovania fosílnych palív, ktoré zabezpečujú energiu na dopravu, výrobu, vykurovanie a výrobu elektriny.[3] Ďalšie emisie CO2 pochádzajú z odlesňovania a priemyselných procesov, ktoré zahŕňajú CO2 uvoľňovaný chemickými reakciami pri výrobe cementu, ocele, hliníka a hnojív.[78][79] Emisie metánu pochádzajú z chovu hospodárskych zvierat, hnoja, pestovania ryže, skládok, odpadových vôd a ťažby uhlia, ako aj z ťažby ropy a zemného plynu.Emisie oxidu dusného pochádzajú najmä z mikrobiálneho rozkladu anorganických a organických hnojív.[80] Z hľadiska výroby sa odhaduje, že hlavnými zdrojmi globálnych emisií skleníkových plynov sú: elektrina a teplo (25 %), poľnohospodárstvo a lesníctvo (24 %), priemysel a výroba (21 %), doprava (14 %) a budovy (6 %).[81]

Napriek tomu, že odlesňovanie prispieva k emisiám skleníkových plynov, zemský povrch, najmä lesy, zostáva významným zásobníkom uhlíka. Prírodné procesy, ako je viazanie uhlíka v pôde a fotosyntéza, viac než kompenzujú príspevok odlesňovania k tvorbe skleníkových plynov. Odhaduje sa, že pôdny kryt odstraňuje približne 29 % ročných globálnych emisií CO2.[82]Oceán tiež slúži ako významný pohlcovač uhlíka prostredníctvom dvojstupňového procesu. Po prvé, CO2 sa rozpúšťa v povrchovej vode. Oceánska cirkulácia ho potom rozvádza hlboko do vnútra oceánu, kde sa časom hromadí ako súčasť kolobehu uhlíka. Za posledných dvadsať rokov svetové oceány absorbovali 20 až 30 % vypusteného CO2.[83]

Aerosóly a oblaky

Znečistenie ovzdušia vo forme aerosólov (častíc) nielenže výrazne zaťažuje ľudské zdravie, ale vo veľkom rozsahu ovplyvňuje aj klímu.[84][85][86] V rokoch 1961 až 1990 bol pozorovaný postupný pokles množstva slnečného svetla dopadajúceho na zemský povrch, jav, ktorý sa populárne označuje ako globálne stmievanie,[87] ktoré sa zvyčajne pripisuje aerosólom zo spaľovania biopalív a fosílnych palív.[88][89] Od roku 1990 aerosóly globálne klesajú, čo znamená, že už toľko nezakrývajú otepľovanie skleníkovými plynmi.[90][91][92]

Aerosóly tiež rozptyľujú a absorbujú slnečné žiarenie. Majú tiež nepriamy vplyv na radiačný rozpočet Zeme. Sulfátové aerosóly pôsobia ako kondenzačné jadrá oblakov a vedú k vzniku oblakov s väčším počtom menších kvapiek. Tieto oblaky odrážajú slnečné žiarenie účinnejšie ako oblaky s menším počtom a väčšími kvapkami.[93] Obmedzujú tiež rast dažďových kvapiek, čím sa oblaky stávajú odrazivejšími pre dopadajúce slnečné žiarenie.[94] Nepriame účinky aerosólov predstavujú najväčšiu neistotu v radiačnom pôsobení.[95]

Zatiaľ čo aerosóly zvyčajne obmedzujú globálne otepľovanie tým, že odrážajú slnečné svetlo, čierny uhlík v sadziach, ktoré padajú na sneh alebo ľad, môže prispievať ku globálnemu otepľovaniu. Nielenže zvyšuje absorpciu slnečného žiarenia, ale zvyšuje aj topenie a stúpanie hladiny morí.[96] Obmedzenie nových depozícií čierneho uhlíka v Arktíde by mohlo znížiť globálne otepľovanie o 0,2 °C do roku 2050.[97]

Zmeny vo využívaní krajiny

Ľudia menia povrch Zeme najmä preto, aby získali viac poľnohospodárskej pôdy. V súčasnosti poľnohospodárstvo zaberá 50 % všetkej obývateľnej pôdy, zatiaľ čo lesy zaberajú 37 % pôdy;[98] podiel lesov sa neustále znižuje,[99] najmä v dôsledku pokračujúceho odlesňovania v tropických oblastiach.[100] Toto odlesňovanie je najvýznamnejším aspektom zmeny využívania pôdy, ktorá ovplyvňuje globálne otepľovanie. Hlavnými príčinami odlesňovania sú premena lesov na plochy na produkciu hovädzieho mäsa a palmového oleja (27 %), lesníctvo/lesné produkty (26 %), krátkodobá poľnohospodárska výroba (24 %) a lesnú plochu znižujú aj požiare (23 %).[101]

Zmeny vo využívaní pôdy ovplyvňujú viac než len emisie skleníkových plynov. Typ vegetácie v regióne ovplyvňuje miestnu teplotu. Ovplyvňuje to, koľko slnečného svetla sa odráža späť do vesmíru (albedo) a koľko tepla sa stráca vyparovaním. Napríklad keď sa tmavý les zmení na trávnatú plochu, povrch je svetlejší, čo spôsobuje, že odráža viac slnečného svetla. Odlesňovanie môže ovplyvniť teplotu aj zmenou uvoľňovania chemických zlúčenín, ktoré ovplyvňujú oblaky, a zmenou veterných režimov.[102] V tropických a miernych oblastiach vedie čistý účinok k výraznému otepľovaniu, zatiaľ čo v zemepisných šírkach bližšie k pólom vedie zvýšenie albedo (keďže lesy sú nahradené snehovou pokrývkou) k ochladzovaniu.[102] Odhaduje sa, že tieto účinky viedli v celosvetovom meradle k miernemu ochladeniu, ktorému dominuje zvýšenie albedo povrchu.[103]

Slnečná a sopečná činnosť

Fyzikálne klimatické modely nie sú schopné reprodukovať rýchle otepľovanie pozorované v posledných desaťročiach, ak berú do úvahy len zmeny slnečného žiarenia a sopečnú činnosť.[104][105] Slnko je hlavným zdrojom energie Zeme, a preto zmeny dopadajúceho slnečného žiarenia priamo ovplyvňujú klimatický systém.[95] Slnečné žiarenie sa meria priamo pomocou satelitov[106] a nepriame merania sú k dispozícii od začiatku 16. storočia. Ďalšie dôkazy o tom, že skleníkové plyny spôsobujú globálne otepľovanie, pochádzajú z meraní, ktoré ukazujú otepľovanie spodnej vrstvy atmosféry (troposféry) spojené s ochladzovaním hornej vrstvy atmosféry (stratosféry).[107] Ak by za pozorované otepľovanie boli zodpovedné slnečné výkyvy, troposféra aj stratosféra by sa otepľovali.[108]

Erupcie sopiek predstavujú najväčšiu prírodnú silu v priemyselnej ére. Ak je erupcia dostatočne silná (oxid siričitý sa dostane do stratosféry), slnečné svetlo môže byť čiastočne blokované až na niekoľko rokov. Teplotný signál trvá približne dvakrát dlhšie. V priemyselnej ére však mala sopečná činnosť zanedbateľný vplyv na globálne teplotné trendy.[108] Súčasné sopečné emisie CO2 predstavujú menej ako 1 % súčasných antropogénnych emisií CO2.[109]

Zmeny na obežnej dráhe Zeme

Zmeny sklonu zemskej osi a tvaru jej obežnej dráhy okolo Slnka sa menia pomaly v priebehu desiatok tisíc rokov. Tieto zmeny majú za následok zmeny v sezónnom a geografickom rozložení dopadajúcej slnečnej energie na zemský povrch, a tým aj zmeny v podnebí.[110] Za posledných niekoľko tisíc rokov tento jav prispel k pomalému trendu ochladzovania vo vysokých zemepisných šírkach severnej pologule počas leta; tento trend sa v priebehu 20. storočia obrátil v dôsledku otepľovania spôsobeného skleníkovými plynmi.[111] Počas nasledujúcich 50 000 rokov nemožno očakávať orbitálne zmeny, ktoré by viedli k ochladzovaniu Zeme.[112][113][114]

Klimatická spätná väzba

Reakcia klimatického systému na počiatočné vplyvy je modifikovaná spätnými väzbami: zvyšuje sa vplyvom pozitívnych spätných väzieb a znižuje sa vplyvom negatívnych spätných väzieb.[115] Hlavnými pozitívnymi spätnými väzbami sú spätná väzba vodnej pary, spätná väzba ľadu a ľadovcov a pravdepodobne aj čistý účinok mrakov.[116] Hlavnou negatívnou spätnou väzbou je radiačné ochladzovanie, keďže zemský povrch v reakcii na zvyšujúcu sa teplotu odovzdáva do vesmíru viac tepla.[116] Okrem teplotných spätných väzieb existujú aj spätné väzby v kolobehu uhlíka, ako je napríklad hnojivý účinok CO2 na rast rastlín.[117] Neistota v súvislosti so spätnými väzbami je hlavným dôvodom, prečo rôzne klimatické modely predpovedajú rôzne množstvo otepľovania pre dané množstvo emisií.[118]

Keď sa vzduch oteplí, môže sa v ňom udržať viac vlhkosti. Po počiatočnom oteplení v dôsledku emisií skleníkových plynov sa v atmosfére udrží viac vody. Vodná para je silným skleníkovým plynom, takže ďalej zohrieva atmosféru.[116] Ak sa zvýši oblačnosť, viac slnečného svetla sa odrazí späť do vesmíru a planéta sa ochladí. Ak sú mraky vyššie a redšie, budú pôsobiť ako izolátor, odrážať teplo zdola a ohrievať planétu.[119] Celkovo čistá spätná väzba mrakov počas priemyselnej éry pravdepodobne zhoršila nárast teploty.[115] Zmenšovanie snehovej pokrývky a morského ľadu v Arktíde znižuje albedo zemského povrchu.[120] V týchto oblastiach sa teraz absorbuje viac slnečnej energie, čo prispieva k zosilneniu teplotných zmien v Arktíde.[121] Zosilnenie arktickej teploty tiež spôsobuje topenie večného ľadu, čím sa do atmosféry uvoľňuje metán a CO2.[122]

Približne polovicu emisií CO2 spôsobených človekom absorbovali suchozemské rastliny a oceány.[123] Na súši zvýšený obsah CO2 a predĺžené vegetačné obdobia stimulovali rast rastlín. Klimatické zmeny zvyšujú výskyt sucha a vĺn horúčav, ktoré brzdia rast rastlín, a preto nie je isté, či sa tento zásobník uhlíka bude v budúcnosti naďalej zväčšovať.[124] Pôda obsahuje veľké množstvo uhlíka a pri zahrievaní môže uvoľňovať určité množstvo uhlíka.[125] Keďže oceán absorbuje viac CO2 a tepla, stáva sa kyslejším, mení sa jeho cirkulácia a fytoplanktón prijíma menej uhlíka, čím sa znižuje rýchlosť, akou oceán absorbuje atmosférický uhlík.[126] Zmena klímy môže zvýšiť emisie metánu z mokradí, morských a sladkovodných systémov a večného ľadu.[127]

Budúce otepľovanie a uhlíkový rozpočet

Budúce otepľovanie závisí od sily spätnej väzby klímy a emisií skleníkových plynov.[128] Prvé sa často odhadujú pomocou klimatických modelov vyvinutých viacerými vedeckými inštitúciami.[129] Klimatické modely predstavujú fyzikálne, chemické a biologické procesy, ktoré ovplyvňujú klimatický systém.[130] Modely zahŕňajú zmeny obežnej dráhy Zeme, historické zmeny slnečnej aktivity a sopečné účinky.[129] Počítačové modely sa pokúšajú reprodukovať a predpovedať cirkuláciu oceánov, ročný cyklus ročných období a toky uhlíka medzi povrchom Zeme a atmosférou.[129] Modely predpokladajú rôzne budúce zvýšenie teploty pri daných emisiách skleníkových plynov; úplne sa nezhodujú v otázke sily rôznych spätných väzieb na citlivosť klímy a veľkosti zotrvačnosti klimatického systému.[131]

Fyzikálny realizmus modelov sa testuje skúmaním ich schopnosti simulovať súčasnú alebo minulú klímu.[132] Staršie modely podhodnotili úbytok arktického morského ľadu[133][134] a podhodnotili rýchlosť nárastu zrážok.[135] Zvýšenie hladiny morí od roku 1990 bolo podhodnotené aj v starších modeloch, ale novšie modely sa dobre zhodujú s pozorovaniami.[136][137] V Národnom hodnotení klímy, ktoré v roku 2017 vydali Spojené štáty, sa uvádza, že "klimatické modely môžu stále podhodnocovať alebo vynechávať relevantné spätné väzby."[138]

Podskupina klimatických modelov dopĺňa jednoduchý fyzikálny model klímy o sociálne faktory. Tieto modely simulujú, ako populácia, hospodársky rast a spotreba energie ovplyvňujú fyzikálne podnebie a ako sú ním ovplyvňované. Na základe týchto informácií môžu tieto modely vytvárať scenáre budúcich emisií skleníkových plynov. Tie sa potom používajú ako vstupy do fyzikálnych klimatických modelov, ktoré vytvárajú prognózy klimatických zmien.[139] V niektorých scenároch emisie v priebehu storočia naďalej rastú, zatiaľ čo v iných emisie klesajú.[140][141] Zdroje fosílnych palív sa ukazujú ako príliš bohaté na to, aby sme sa pri obmedzovaní emisií uhlíka v 21. storočí spoliehali na ich nedostatok.[142] Emisné scenáre sa dajú kombinovať s modelovaním uhlíkového cyklu, aby sa dalo predpovedať, ako sa môžu v budúcnosti zmeniť koncentrácie skleníkových plynov v atmosfére.[143] Podľa kombinovaných modelov by sa koncentrácie CO2 v atmosfére v roku 2100 mohli pohybovať v rozmedzí od 380 ppm do 1400 ppm v závislosti od sociálno-ekonomických scenárov a scenárov zmierňovania.[144][145]

Šiesta hodnotiaca správa IPCC predpokladá, že globálne otepľovanie do konca 21. storočia s veľkou pravdepodobnosťou dosiahne 1,0 °C až 1,8 °C pri scenári veľmi nízkych emisií skleníkových plynov. Podľa stredného scenára by globálne oteplenie dosiahlo 2,1 °C až 3,5 °C a podľa scenára veľmi vysokých emisií skleníkových plynov 3,3 °C až 5,7 °C.[146] Tieto prognózy vychádzajú z klimatických modelov v kombinácii s pozorovaniami.[147]

Zostávajúci uhlíkový rozpočet sa určuje na základe modelovania uhlíkového cyklu a citlivosti klímy na skleníkové plyny.[148] Podľa IPCC možno globálne otepľovanie udržať pod 1,5 °C s dvojtretinovou pravdepodobnosťou, ak emisie po roku 2018 neprekročia 420, resp. 570 Gt CO2.[148] To zodpovedá 10 až 13 rokom súčasných emisií. V súvislosti s týmto rozpočtom existujú veľké neistoty. Môže byť napríklad o 100 Gt CO2 nižšia v dôsledku uvoľňovania metánu z permafrostu a mokradí.[149]


Vplyvy

Rekonštrukcia historickej hladiny mora a prognózy do roku 2100 zverejnenej v roku 2017 americkým Programom výskumu globálnej zmeny.[150]

Fyzické prostredie

Vplyvy zmeny klímy na životné prostredie sú rozsiahle a ďalekosiahle, ovplyvňujú oceány, ľad a počasie. Zmeny môžu prebiehať postupne alebo rýchlo. Dôkazy o týchto účinkoch pochádzajú zo štúdia klimatických zmien v minulosti, z modelovania a z moderných pozorovaní.[151][152] Od päťdesiatych rokov 20. storočia sa s rastúcou početnosťou objavujú súčasne suchá a vlny horúčav.[153] V Indii a východnej Ázii sa zvýšil počet extrémne vlhkých alebo suchých udalostí v rámci monzúnového obdobia.[154][155] Pravdepodobne sa zvyšuje množstvo zrážok a intenzita hurikánov a tajfúnov.[156][157] Frekvencia tropických cyklón sa v dôsledku zmeny klímy nezvýšila.[158]

Globálna hladina morí sa zvyšuje v dôsledku topenia ľadovcov, topenia ľadového príkrovu Grónska a Antarktídy a teplotnej expanzie otepľujúcej sa vody v oceánoch. Medzi rokmi 1993–2020 sa vzostup v čase zvyšoval a predstavoval v priemere 3,3±0,3 mm ročne.[159] V priebehu 21. storočia by podľa odhadov IPCC mohla hladina morí pri scenári s veľmi vysokými emisiami stúpnuť o 61–110 cm.[160] Zvýšené oteplenie oceánov hrozí odtrhnutím splazov antarktických ľadovcov, čo predstavuje riziko ďalšieho rozsiahleho topenia ľadovcov[161] a možnosť až dvojmetrového vzostupu hladiny morí do roku 2100 pri vysokých emisiách.[162]

Klimatické zmeny viedli k desaťročnému zmenšovaniu a stenčovaniu arktického morského ľadu.[163] zatiaľ čo pri oteplení o 1,5 °C sa očakáva, že roky bez ľadu budú vzácne, pri oteplení o 2 °C sa budú vyskytovať raz za tri až desať rokov.[164] Vyššie koncentrácie CO2 v atmosfére viedli k zmenám v chemickom zložení oceánov. Nárast rozpusteného CO2 spôsobuje okysľovanie oceánov,[165] navyše sa znižuje hladina kyslíka, pretože kyslík je v teplejšej vode horšie rozpustný,[166] rozširujú sa aj mŕtve zóny v oceáne, oblasti s veľmi malým obsahom kyslíka.[167]

Body zvratu a dlhodobé dopady

Čím väčšie je globálne otepľovanie, tým väčšie je riziko prekročenia tzv. bodov zvratu, teda prahových hodnôt, za ktorými už nemožno zabrániť určitým dopadom ani pri znížení teploty.[168] Príkladom je problém ľadového príkrovu v západnej Antarktíde a Grónsku, kde zvýšenie teploty o 1,5 °C až 2 °C môže viesť k jeho kolapsu; časový rozsah topenia je neistý a závisí od budúceho oteplenia.[169][170] Niektoré rozsiahle zmeny by mohli nastať v krátkom časovom období, napríklad kolaps atlantickej meridionálnej prevratnej cirkulácie (AMOC),[171] čo by vyvolalo veľké klimatické zmeny v severnom Atlantiku, Európe a Severnej Amerike.[172]

Dlhodobé dôsledky klimatických zmien zahŕňajú ďalšie topenie ľadu, otepľovanie oceánov, zvyšovanie hladiny morí a okysľovanie oceánov.[173] V časovom meradle stáročia až tisícročia bude rozsah klimatických zmien určovaný predovšetkým antropogénnymi emisiami CO2, čo je dané dlhou dobou života CO2 v atmosfére,[174] pretože pohlcovanie CO2 oceánmi je natoľko pomalé, že okysľovanie oceánov bude pokračovať stovky až tisíce rokov.[175] Odhaduje sa, že tieto emisie môžu predĺžiť súčasnú dobu medziľadovú až o 100 000 rokov.[176] Zvyšovanie hladiny morí bude pokračovať po mnoho storočí, pričom sa odhaduje, že po 2 000 rokoch stúpne o 2,3 metra na každý stupeň Celzia oteplenia.[177][178]

Príroda a voľne žijúce zvieratá

Nedávne otepľovanie vyhnalo mnoho suchozemských a sladkovodných druhov smerom k pólom a do vyšších nadmorských výšok.[179] Vyššia hladina CO2 v atmosfére a dlhšie vegetačné obdobie viedli ku globálnemu ozeleneniu. Vlny horúčav a sucha však v niektorých regiónoch znížili produktivitu ekosystémov. Budúca rovnováha týchto protichodných vplyvov je nejasná.[180] Zmena klímy prispela k rozšíreniu suchších klimatických zón, napríklad k rozšíreniu púští v subtrópoch.[181][182] Rozsah a rýchlosť globálneho otepľovania zvyšuje pravdepodobnosť náhlych zmien v ekosystémoch.[183] Celkovo sa očakáva, že zmena klímy povedie k vyhynutiu mnohých druhov.[184]

Oceány sa ohrievajú pomalšie ako pevnina, ale rastliny a živočíchy v oceánoch migrujú smerom k chladnejším pólom rýchlejšie ako druhy na pevnine.[185][186] Rovnako ako na pevnine, sa v oceánoch v dôsledku zmeny klímy častejšie objavujú vlny horúčav, ktoré poškodzujú celý rad organizmov, ako sú koraly, riasy a morské vtáky.[187] Okysľovanie oceánov sťažuje organizmom, ako sú lastúrniky, svijonožce a koraly, tvorbu schránok a kostier; vlny horúčav vybielili koralové útesy.[188] Škodlivé kvitnutie rias posilnené zmenou klímy a eutrofizáciou znižujú hladinu kyslíka vo vode, narúšajú potravinové reťazce a spôsobujú veľké straty morských živočíchov.[189] Pobrežné ekosystémy sú vystavené zvláštnemu stresu. Takmer polovica svetových mokradí zmizla v dôsledku zmeny klímy a ďalších ľudských vplyvov.[190]

Vplyvy zmeny klímy na životné prostredie

Vplyv na človeka

Vplyvy zmeny klímy na človeka, predovšetkým v dôsledku otepľovania a zmien zrážok, boli pozorované po celom svete – sú teraz pozorovateľné na všetkých kontinentoch i naprieč oceánmi,[191] pričom najväčšiemu riziku čelia menej rozvinuté regióny v rovníkových oblastiach.[192] Pokračujúce otepľovanie má potenciálne „závažné, všadeprítomné a nevratné dopady“ na ľudí a ekosystémy.[193] Riziká sú nerovnomerne rozložené, ale vo všeobecnosti sú väčšie pre znevýhodnených ľudí v rozvojových a rozvinutých krajinách.[194]

Potraviny a zdravie

Zdravotné dopady zahŕňajú priame účinky extrémneho počasia, ktoré vedú k poškodeniu zdravia i stratám na životoch,[195] tak nepriame dopady, ako je podvýživa spôsobená neúrodou.[196][197][198] V teplejšej klíme sa ľahšie prenášajú rôzne infekčné choroby, ako je horúčka dengue, ktorá najviac postihuje deti, a tiež malária.[199] Malé deti sú najviac ohrozené nedostatkom potravín a spolu so staršími ľuďmi extrémnym horúčavou.[200] Svetová zdravotnícka organizácia (WHO) odhaduje, že v rokoch 2030 až 2050 by zmena klímy mala spôsobiť približne 250 000 ďalších úmrtí ročne v dôsledku vystavenia starších ľudí horúčave, nárastu hnačkových ochorení, malárie, horúčky dengue, pobrežných záplav a podvýživy detí.[201] Do roku 2050 sa predpokladá viac ako 500 000 ďalších úmrtí dospelých ročne v dôsledku zníženia dostupnosti a kvality potravín.[202][203] Medzi ďalšie významné zdravotné riziká spojené so zmenou klímy patrí kvalita ovzdušia a vody.[204][205] WHO klasifikovala vplyvy zmeny klímy na človeka ako najväčšiu hrozbu pre celosvetové zdravie v 21. storočí.[206]

Zmena klímy ovplyvňuje potravinovú bezpečnosť. V rokoch 1981–2010 spôsobila zníženie celosvetových priemerných výnosov kukurice, pšenice a sóje.[207] Budúce otepľovanie by mohlo ďalej znížiť celosvetové výnosy hlavných plodín.[208][209] Produkcia plodín bude pravdepodobne negatívne ovplyvnená v krajinách s nízkou zemepisnou šírkou, zatiaľ čo v severných zemepisných šírkach môžu byť účinky pozitívne alebo negatívne.[210] V dôsledku týchto vplyvov hrozí hlad až ďalším 183 miliónom ľudí na celom svete, najmä tým s nižšími príjmami.[211] Vplyvy otepľovania na oceány majú vplyv na stavy rýb, kedy dochádza ku globálnemu poklesu maximálneho úlovkového potenciálu. Zvýšený potenciál vykazujú iba polárne populácie.[212] Regióny závislé na vode z ľadovcov, regióny, ktoré sú už teraz suché, a malé ostrovy sú v dôsledku zmeny klímy vystavené zvýšenému riziku nedostatku vody.[213][214]

Sociálne problémy

Ekonomické škody spôsobené zmenou klímy môžu byť vážne a existuje pravdepodobnosť katastrofických rizikových udalostí.[215][216] Zmena klímy už pravdepodobne zvýšila globálnu ekonomickú nerovnosť a tento trend bude podľa prognóz pokračovať.[217][218][219] Najväčšie vážne dôsledky sa očakávajú v subsaharskej Afrike a juhovýchodnej Ázii, kde sa už teraz prehlbuje súčasná chudoba.[220] Svetová banka odhaduje, že zmena klímy by mohla do roku 2030 uvrhnúť do chudoby viac ako 120 miliónov ľudí.[221] Zistilo sa, že súčasné nerovnosti medzi mužmi a ženami, medzi bohatými a chudobnými a medzi rôznymi etnikami sa v dôsledku premenlivosti klímy a klimatických zmien prehĺbia.[222] Z prieskumu medzi odborníkmi vyplynulo, že úloha klimatických zmien v ozbrojených konfliktoch je v porovnaní s faktormi, ako sú socioekonomické nerovnosti a možnosti štátu, malá, ale že budúce otepľovanie prinesie rastúce riziká.[223]

Nízko položené ostrovy a pobrežné komunity sú ohrozené nebezpečenstvami spôsobenými zvyšovaním hladiny morí, ako sú záplavy a trvalé zatopenie,[224] čo by mohlo viesť k tomu, že obyvatelia ostrovných štátov, ako sú Maledivy a Tuvalu, prídu o miesto k životu.[225] V niektorých regiónoch môže byť nárast teploty a vlhkosti príliš silný na to, aby sa mu ľudia mohli prispôsobiť.[226] Pri najhoršom priebehu klimatickej zmeny by podľa modelov mohla takmer tretina ľudstva žiť v extrémne horúcom a neobývateľnom podnebí, podobne ako je tomu v súčasnej dobe na Sahare.[227] Tieto faktory a extrémne výkyvy počasia môžu byť príčinou environmentálnej migrácie, a to tak v rámci jednotlivých krajín, ako aj medzi nimi.[228] Očakáva sa, že v dôsledku častejších extrémnych výkyvov počasia, zvyšovania hladiny morí a konfliktov vyplývajúcich zo zvýšeného súperenia o prírodné zdroje dôjde k nárastu vysídľovania ľudí. Zmena klímy môže tiež zvýšiť zraniteľnosť, čo povedie k vzniku „uväznených populácií“, ktoré sa kvôli nedostatku zdrojov nemôžu presťahovať.[229][230]

Reakcia

Scenáre globálnych emisií skleníkových plynov. Ak by všetky krajiny splnili svoje súčasné záväzky z Parížskej dohody, priemerné oteplenie do roku 2100 by stále výrazne prekračovalo maximálny cieľ 2 °C stanovený dohodou.

Zmierňovanie následkov (mitigácia)

Graf vpravo ukazuje scénáře k naplnění cílů Rámcové úmluvy OSN o změně klimatu
Graf vpravo ukazuje scenáre k naplnenie cieľov Rámcového dohovoru OSN o zmene klímy. Globalné emisie skleníkových plynu a možnosti ich zníženia – oteplenie max. 2 °C – označené „globálne technológie“, „decentralizované riešenie“ a „zmena spotreby“. Každý scenár ukazuje, ako by rôzne opatrenia (napr. zlepšenie energetickej účinnosti, zvýšené využívanie energie z obnoviteľných zdrojov) mohlo prispieť k zníženiu emisií.[231]

Zmenu klímy možno zmierniť znížením emisií skleníkových plynov a posilnením prepadov, ktoré pohlcujú skleníkové plyny z atmosféry.[232] Aby bolo možné s vysokou pravdepodobnosťou obmedziť globálne otepľovanie na menej ako 1,5 °C, musí byť do roku 2050 čisté emisie skleníkových plynov nulové, ak chceme dosiahnuť oteplenie do 2 °C, musíme dosiahnuť uhlíkovú neutralitu do roku 2070.[233] To bude vyžadovať ďalekosiahle systémové zmeny v bezprecedentnom meradle v energetike, pri obhospodarovaní pôdy, v mestách, v doprave, vo využívaní budov av priemysle.[234] Program OSN pre životné prostredie odhaduje, že na obmedzenie globálneho otepľovania na 2 °C musí krajina počas budúceho desaťročia strojnásobiť svoje záväzky vyplývajúce z Parížskej dohody. Ešte väčšia miera zníženia je potrebná na splnenie cieľa 1,5 °C.[235] So záväzkami prijatými v rámci Parížskej dohody k októbru 2021 by globálne otepľovanie malo stále 66 % šancu dosiahnuť do konca storočia približne 2,7 °C (rozmedzie: 2,2 – 3,2 °C).[236]

Hoci neexistuje jediná cesta, ako obmedziť globálne otepľovanie na 1,5 alebo 2 °C,[237] väčšina scenárov a stratégií predpokladá výrazné zvýšenie využívania obnoviteľných zdrojov energie v kombinácii so zvýšením opatrení v oblasti energetickej účinnosti, ktoré by prinieslo potrebné zníženie emisií skleníkových plynov.[238] Na zníženie tlaku na ekosystémy a zvýšenie ich schopnosti pohlcovať uhlík by bolo potrebné vykonať zmeny aj v poľnohospodárstve a lesníctve,[239] napríklad zabrániť odlesňovaniu a obnoviť prírodné ekosystémy zalesňovaním.[240]

Iné prístupy na zmiernenie zmeny klímy majú vyššiu mieru rizika. Scenáre, ktoré obmedzujú globálne otepľovanie na 1,5 °C, zvyčajne počítajú s rozsiahlym využitím metód odstraňovania oxidu uhličitého v priebehu 21. storočia,[241][242] existujú však obavy z prílišného spoliehania sa na tieto technológie az dopadov na životné prostredie.[243][244] Možným doplnkom hlbokého zníženia emisií je aj riadenie slnečného žiarenia (SRM). Geoinžinierstvo však vyvoláva značné etické a právne problémy a riziká sú nedostatočne preskúmané.[245]

Uhlie, ropa a zemný plyn zostávajú hlavnými svetovými zdrojmi energie, hoci obnoviteľné zdroje energie začali rýchlo rásť.[246]

Čistá energia

Obnoviteľná energia je kľúčom k obmedzeniu zmien klímy.[247] Fosílne palivá boli v roku 2018 zdrojom 80 % svetovej energie. Zostávajúci podiel bol rozdelený medzi jadrovú energiu a obnoviteľné zdroje (vrátane solárnej a veternej energie, bioenergie, geotermálnej energie a vodnej energie).[248] Predpokladá sa, že tento mix sa v nasledujúcich 30 rokoch výrazne zmení.[238] Solárna a veterná energia zaznamenali v posledných niekoľkých rokoch značný rast a pokrok. Solárne panely a veterné elektrárne na pevnine sú vo väčšine krajín najlacnejšími formami navýšenia nových kapacít výroby elektriny. Obnoviteľné zdroje predstavovali 75 % všetky novo inštalované výroby elektriny v roku 2019, takmer všetky boli solárne a veterné. Podiel jadrovej energie medzitým zostáva rovnaký, ale náklady rastú. Výroba jadrovej energie je teraz v prepočte na megawatthodinu niekoľkonásobne drahšia ako výroba energie z vetra a slnka.

Na dosiahnutie uhlíkovej neutrality do roku 2050 by sa obnoviteľná energia mala stať dominantnou formou výroby elektriny av niektorých scenároch by mala do roku 2050 dosiahnuť 85 % alebo viac. Využitie elektriny na vykurovanie a dopravu by malo vzrásť do tej miery, že by sa elektrina stala prevažujúcou formou energie.[249][250] Investície do uhlia by sa mali eliminovať a používanie uhlia by sa malo do roku 2050 takmer ukončiť.[251][252]

V doprave scenára počíta s prudkým nárastom podielu elektrických vozidiel a verejnej dopravy as prechodom na nízkouhlíkové palivo u ďalších druhov dopravy, ako je lodná doprava.[253] Vykurovanie by sa malo čoraz viac dekarbonizovať s využitím technológií, ako sú tepelné čerpadlá.[254][255]

Pokračujúcemu rýchlemu rastu obnoviteľných zdrojov energie bránia niektoré prekážky. V prípade solárnej a veternej energie je kľúčovým problémom ich nestálosť a sezónna premenlivosť. Tradične sa na udržanie stability elektrickej siete používajú vodné priehrady s nádržami a konvenčné elektrárne. Intermitenciu sa ďalej čelí rozširovaním batériových úložísk a zlaďovaním dopytu po energii a jej ponuky. Diaľkový prenos môže vyrovnávať premenlivosť výroby z obnoviteľných zdrojov v širších zemepisných oblastiach.[247] Pri veľkých solárnych a veterných projektoch sa môžu vyskytnúť problémy s ochranou životného prostredia a využívaním pôdy, zatiaľ čo bioenergia často nie je uhlíkovo neutrálna a môže mať negatívne dôsledky pre potravinovú bezpečnosť.[256] Rast vodnej energie sa spomaľuje a bude ďalej klesať kvôli obavám zo sociálnych a environmentálnych vplyvov.

Nízkouhlíková energia zlepšuje ľudské zdravie tým, že minimalizuje zmenu klímy, a má zároveň aj okamžitý prínos v podobe zníženia počtu úmrtí na znečistené ovzdušie,[257][258] ktorý sa v roku 2016 odhadoval na 7 miliónov ročne.[259][260] Splnenie cieľov Parížskej dohody, ktoré obmedzujú otepľovanie na zvýšenie o 2 °C, by mohlo do roku 2050 zachrániť asi milión týchto životov ročne, zatiaľ čo obmedzenie globálneho otepľovania na 1,5 °C by mohlo zachrániť milióny a zároveň zvýšiť energetickú bezpečnosť a znížiť chudobu.[261][262]

Hospodárskym odvetviam s vyšším podielom skleníkových plynov majú politiky v oblasti zmeny klímy venovať väčšiu pozornosť.

Energetická účinnosť

Zdroj:
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.

čítajte viac o Globálne_otepľovanie





Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk